
Journal of Mathematical Chemistry Vol. 30, No. 3, October 2001 (© 2002)

New lower bound on the number of perfect matchings
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Heping Zhanga,∗∗ and Fuji Zhangb

a Department of Mathematics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
E-mail: zhanghp@lzu.edu.cn

b Department of Mathematics, Xiamen University, Xiamen, Fujian 361005, P.R. China
E-mail: fjzhang@jingxian.xmu.edu.cn

Received 28 August 2000

Dedicated to the 80th birthday of Professor Frank Harary

A fullerene graph is a cubic and 3-connected plane graph (or spherical map) that has exactly
12 faces of size 5 and other faces of size 6, which can be regarded as the molecular graph of a
fullerene. T. Došlíc [3] obtained that a fullerene graph withp vertices has at least(p + 2)/2
perfect matchings by applying the recently developed decomposition techniques in matching
theory of graphs. This note gets a better lower bound�3(p + 2)/4� of the number of perfect
matchings of a fullerene graph by finding its 2-extendability. This property further implies
a chemical consequence that every derivative of a fullerene by substituting any two pairs of
adjacent carbon atoms permits a Kekulé structure.
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The discovery of the carbon species C60 [7] has been giving significant scientific in-
terest in theoretical research of the underlying graphs. A fullerene,Fn, is a carbon mole-
cule which can be seen a trivalent 3-polyhedron of 12 pentagons and other hexagons.
For all evenn � 20 vertices or carbons, fullereneFn can be constructed except for
n = 22. The enumeration of isomers of fullerenes is given in a constructive way [2].
Among these isomers, a fullerene ofn carbon atoms whose pentagons are isolated (i.e.,
any pentagons does not share an edge (bond)) is denoted by Cn. It is known that the
unique C60, buckminsterfullerene, is the truncated icosahedron.

A fullerene graph is a 3-regular (cubic) and 3-connected plane graph (or spherical
map) that has exactly 12 faces of size 5 and other faces of size 6. Amatching of a graph
G is a setM of edges ofG such that no two edges ofM share an end-vertex; further a
matchingM ofG is perfect if any vertex ofG is incident with an edge ofM. A fullerene
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graph is the molecular graph of a fullerene and perfect matching in graphs coincides
with Kekulé structure in organic chemistry. As early as in 1891 Petersen [10] obtained
that every 3-regular graph with no more than two cut-edges has a perfect matching,
which implies that a fullerene graph has a perfect matching. This also gives a chemical
explanation that fullerenes are a class of stable carbon clusters. A natural and interesting
problem is to count perfect matchings of any given fullerene graph. For example, the
numbers of perfect matchings of C60 and C70 were computed to be 12500 and 52168 [1],
respectively, in computer programme. It should be mentioned that for all plane graphs,
a physicist Kasteleyn developed a Pfaffian method to compute the number of perfect
matchings in polynomial times (cf. [9]).

But to give an explicit expression of perfect matchings of a family of graphs (such
as fullerenes) is still a difficult problem. Hence it is an interesting topic to give some
simple bounds or estimations of perfect matchings. The famous Four-Color theorem has
an equivalent proposition: the edge-set of a 2-edge connected 3-regular graph can be
decomposed into the union of three edge-disjoint perfect matchings. Thus a fullerene
graph has at least three perfect matchings [6] and each edge lies in a perfect matching.

T. Došlić [3] gave a better lower boundp/2+1 of the number of perfect matchings
of fullerene graphs withp vertices by applying some decomposition techniques, such as
the Cathedral Construction and Two-Ear theorem (cf. [9]), recently developed in match-
ing theory. The bounds are fully independent of the particular isomer and the first ones
which reflect relations between the size of a fullerene graph and the number of perfect
matchings. In this note we first obtain a stronger structural property that every fullerene
graph is 2-extendable, then show that every fullerene graph has at least�3(p + 2)/4�
perfect matchings, accordingly improving the Došlić’s bound. Here�a� denotes the
minimum integer that is not less than the given real numbera.

We now introduce some further concepts appeared in matching theory, which will
play significant role in some structural properties of fullerenes. A connected graphG

with at least 2k + 2 points is said to bek-extendable if it contains a matching of size
k and every such matching is contained in a perfect matching. A graphG is said to be
bicritical if G − u − v has a perfect matching for every choice of a pair of pointsu

and v. A graphG is cyclically k-edge-connected if G cannot be separated into two
components, each containing a cycle, by deletion of fewer thank edges. The terminology
and notations in graph theory used but not unexplained in this article are standard and
can be found in many textbooks.

Holton and Plummer [8] established the following relation between the cyclic
edge-connection and extendability of a fullerene graph.

Theorem 1. If G is a cubic 3-connected planar graph which is cyclically 4-edge-
connected and has no faces of size 4, thenG is 2-extendable.

Došlić in [3] showed the following result.

Theorem 2. Every fullerene graph is cyclically 4-edge-connected.



H. Zhang, F. Zhang / New lower bound on the number of perfect matchings 345

Fowler et al. [4,5] revealed some properties of the dual of a fullerene, which are
actually equivalent to theorem 2, in showing a generlized ring spiral algorithm for coding
fullerenes.

Theorem 3. The following statements are equivalent.

(i) Every fullerene graph is cyclically 4-edge-connected;

(ii) No dual of a fullerene has a separating triangle;

(iii ) The dual of a fullerene is 4-connected.

Proof. We give only a sketch. It suffices to prove only that the negative propositions of
three statements in the theorem are equivalent. LetF denote a fullerene graph andF ∗
its dual. SinceF ∗ is also a 3-polytope graph,F ∗ is 3-connected. A separating triangle
of F ∗ means a cycle of 3-length the removal of which results in a disconnected graph.
Suppose that the minimum edge-cuts ofF and vertex-cuts ofF ∗ contain exactly three
elements. It is easily known that a cyclic 3-edge-cut ofF corresponds to a separating
triangle ofF ∗ and the latter further corresponds to a 3-vertex-cut ofF ∗; conversely, a
3-vertex-cut ofF ∗ corresponds to a separating triangle ofF ∗ and to a cyclic 3-edge-cut
of F . Here a cyclic 3-edge-cut ofF means a set of three edges such thatF would be
separated into at least two components, each containing a cycle, by the deletion of these
three edges. So the theorem follows. �

Combining theorems 1 and 2, we have immediately the following 2-extendability
of fullerene graphs.

Theorem 4. Every fullerene graph is 2-extendable.

Since a 2-extendable graphs with non-bipartite is bicritical (cf. [11]) and a bicritical
graph must be 1-extendable, we thus have the following two consequences, which have
been shown in [3].

Corollary 5. Every fullerene graph is bicritical.

Corollary 6. Every fullerene graph is 1-extendable.

We now turn to the estimation for the number of perfect matchings of fullerene
graphs by applying the above structural properties obtained. By the Two-Ear decompo-
sition of 1-extendable graphs (cf. [9]), Došlić observed the following result.

Theorem 7. A 1-extendable graph withp vertices andq edges contains at least(q −
p)/2+ 2 perfect matchings.

For bicritical graphs, we have the following result [9, p. 303].
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Theorem 8. A bicritical graph withp vertices contains at leastp/2+ 1 perfect match-
ings.

Since a fullerene graph is bicritical (corollary 6), by the above theorem the follow-
ing result is obvious.

Theorem 9 [3]. Every fullerene graph has at leastp/2+ 1 perfect matchings.

We now have a better result than the above theorem by using 2-extendability of a
fullerene graph.

Theorem 10. Every fullerene graph withp vertices has at least�3(p + 2)/4� perfect
matchings.

Proof. Let Fp denote a fullerene graph withp vertices. For any given vertexu of Fp,
the three neighbors ofu are denotedv1, v2 andv3. LetMi denote the set of perfect
matchings ofFp containing the edgeuvi(i = 1,2,3). Thus the perfect matchings ofFp
can be decomposed into three disjoint classesMi, i = 1,2,3. LetF ′ = Fp − u − vi .
Then the number of perfect matchings ofF ′ is equal to the size ofMi . SinceFp is
2-extendable, thenF ′ is 1-extendable. It is obvious thatF ′ has exactlyp − 2 vertices
and 3p/2− 5 edges. By theorem 7 it follows thatF ′ has at least(p/4+ 1/2) perfect
matchings; that is,|Mi | � p/4 + 1/2. ThusFp has at least 3(p/4 + 1/2) perfect
matchings. Since the number of perfect matchings is an integer, the theorem follows.�

From the basic structural properties that every fullerene graph is cyclically 4-edge
connected and 2-extendable, theorem 10 establishes a new lower bound of the number
of perfect matchings of a fullerene, which is only relied on the number of vertices but
independent of the concrete polyhedral structures. This lower bound further improves
greatly various lower bounds [3,6] previously obtained.

Thecyclic edge-connectivity, cλ, of a graphG is the maximum integerk such that
G is cyclically k-edge-connected. Combining Sachs’ result that for 2-edge connected
cubic graphcλ � 5 (cf. [11]) and theorem 2, we know that for fullerene graphs 4�
cλ � 5. Here we propose a problem: to determine the cyclic edge-connectivity of
fullerene graphs.

Theextendability of a graphG is a maximum integerk such thatG is k-extendable.
It is known that no planar graphs are 3-extendable (cf. [11]). From theorem 4 we know
that the extendability of every fullerene graph is 2. The 2-extendability of a fullerene
graph implies a chemical consequence that every derivative of a fullerene by substituting
any two pairs of adjacent carbon atoms permits a Kekulé structure.
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